
©2000-2019 PORTAONE, INC. ALL RIGHTS RESERVED.

WWW.PORTAONE.COM

PORTA
ONE

Provisioning
Application 75

MAINTENANCE

RELEASE

 Reference Guide

M2M / IOT FOR CSP

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

2

Copyright notice & disclaimers

Copyright © 2000–2019 PortaOne, Inc. All rights reserved

Provisioning Application Reference Guide, February 2019
Maintenance Release 75
V1.75.15

Please address your comments and suggestions to: Sales Department,
PortaOne, Inc. Suite #408, 2963 Glen Drive, Coquitlam BC V3B 2P7
Canada.

Changes may be made periodically to the information in this publication.
The changes will be incorporated in new editions of the guide. The
software described in this document is furnished under a license
agreement, and may be used or copied only in accordance with the terms
thereof. It is against the law to copy the software on any other medium,
except as specifically provided in the license agreement. The licensee may
make one copy of the software for backup purposes. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopied,
recorded or otherwise, without the prior written permission of PortaOne
Inc.

The software license and limited warranty for the accompanying products
are set forth in the information packet supplied with the product, and are
incorporated herein by this reference. If you cannot locate the software
license, contact your PortaOne representative for a copy.

All product names mentioned in this manual are for identification
purposes only, and are either trademarks or registered trademarks of their
respective owners.

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

3

Table of Contents

Preface .. 4
Overview ... 5
Receiving provisional events .. 5
Retrieiving data from PortaBilling® .. 7
Sample work flow ... 9
Event types .. 14

Group: Subscriber ... 15
Group: Customer ... 16
Group: Invoice .. 16
Group: DID ... 17

Commonly used PortaBilling® API methods ... 17
APPENDIX A. Authentication methods ... 18
APPENDIX B. Sample Application to process provisioning events 20

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

4

Preface
This document provides information for developers who create an
external application to provision external systems, such as mobile core
network components, IPTV platforms, etc. based on data received from
PortaBilling®.

Where to get the latest version of this guide

The hard copy of this guide is updated upon major releases only, and does
not always contain the latest material on enhancements that occur in-
between minor releases. The online copy of this guide is always up to
date, and integrates the latest changes to the product. You can access the
latest copy of this guide at: www.portaone.com/support/documentation/.

Conventions

This publication uses the following conventions:
• Commands and keywords are given in boldface.
• Terminal sessions, console screens, or system file names are

displayed in fixed width font.

Exclamation mark draws your attention to important actions that must
be taken for proper configuration.

NOTE: Notes contain additional information to supplement or accentuate important
points in the text.

Timesaver means that you can save time by taking the action described
here.

Tips provide information that might help you solve a problem.

Gear points out that this feature must be enabled on the Configuration
server.

Trademarks and copyrights

PortaBilling®, PortaSIP® and PortaSwitch® are registered trademarks of
PortaOne, Inc.

http://www.portaone.com/support/documentation/

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

5

Overview
When an administrator adds or removes customers in PortaBilling®, or
when customer configuration changes (e.g. a credit limit is reached, a
product is changed, an invoice is issued or becomes paid, etc.), these
changes are recorded as provisioning events. The External system
provisioning framework (ESPF) monitors these events and sends them
via the HTTP/HTTPS protocol to an external application (referred to as
the Application in this document).

The Application acts as follows:

• receives provisioning events that contain a unique ID of the
entity (e.g. an account) from PortaBilling®,

• retrieves the information about this entity (e.g. account’s number,
product, service features, etc.) from PortaBilling® via the
PortaBilling API using the entity’s unique ID (e.g. i_account),

• updates the configuration of an external system via this system’s
API.

Receiving provisional events
The ESPF sends provisioning events in POST requests with the content
in the JSON format. Requests are sent in asynchronous mode with the
average number of 10 requests per second.

POST requests are sent to the Application’s URL. We recommend using
the HTTPS transport protocol since it ensures that the communication
between PortaBilling® and the application is secure.

Sending parameters such as the Application’s URL, HTTP authorization
information are defined for the ESPF on the PortaBilling® Configuration
server. PortaBilling® administrator provides these data for developers
who create an external application.

The POST request contains the following mandatory headers:

• Date – This is the originating date and time of the request
message in the HTTP date format;

• Content-Type – This is the media body type of the request (i.e.
application/json).

• Authorization – This is authentication information provided by
PortaBilling® to authenticate itself with the Application. This
header contains the authentication method (basic, custom or
signature) followed by credentials.

https://www.portaone.com/docs/PortaBilling_API.html

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

6

The default method is Basic. This means that PortaBilling®
provides base64-encoded user ID and password in the
Authorization header field.

The body of the POST request contains:

• event_type – This is the type of event (created, updated, deleted)
that has been applied to a specific entity in PortaBilling® such as:

o an account,
o a customer,
o an invoice,
o a DID number;

• variables – This is the unique ID of the entity that has been
modified in PortaBilling®. These are: i_account / i_customer /
i_invoice / number (for a DID).

In PortaBilling®, an account record stores information about
subscriber’s configuration. For compliance with external systems,
changes in account’s configuration are reflected as events of a
Subscriber group. A customer record in PortaBilling® stores
general information (e.g. invoicing, taxation, etc.) about the owner
of acount(s).

Here is an example of the POST request that is sent to the Application:

Date: Fri, 11 May 2018 13:28:08 GMT
Authorization: Signature keyId="test",algorithm="hmac-
sha1",signature="b+Y3I1ymQTsuq0h3HNiIl3P3SdE="
Host: 192.168.243.244:5000
Referrer: http://192.168.243.244:5000/
TE: trailers
Content-Length: 83
Content-Type: application/json

{
 "event_type": "Subscriber/Created",
 "variables": {
 "i_account": "1000889"
 }
}

To notify the ESPF about the result of provisioning, the Application
responds with the HTTP Status Codes. Once a response is received, the
ESPF acts as follows:

• 200 OK – The event has been provisioned successfully. The ESPF
removes the event from the provisioning queue.

• 4xx Client Error (e.g. 400 Bad Request) – The event must not be
provisioned. The ESPF removes the event from the provisioning
queue.

https://www.restapitutorial.com/httpstatuscodes.html

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

7

• Other status code – An issue appered during provisioning. The
ESPF re-sends the event.

• If no response is received from the Application during the
timeout (5 seconds by default) – the ESPF re-sends the event to
the Application.

Please make sure your application can accept the same
provisioning event multiple times.

Please note that the ESPF only interacts with the Application. It considers
that the external system (e.g. HSS) has been successfully provisiond once
the 200 OK is received. Therefore, in case of provisioning issues between
the Application and the external system, make sure that the Application
replies with the proper status code.

Retrieiving data from PortaBilling®
When the Application receives a provisioning event, it connects to
PortaBilling® via the XML (SOAP) or JSON (REST) API to retrieve the
information about the modified entity.

Connection to the XML / JSON API is provided via HTTPS.

To access the XML API, SOAP requests to PortaBilling API must be sent
to the following URL:

https://portabilling-
web.yourdomain.com:port/soap/service/method

To access the REST API, JSON requests to PortaBilling API must be
sent to the following URL:

https://portabilling-
web.yourdomain.com:port/rest/service/method

Replace the portabilling-web.yourdomain.com with the actual
hostname of the PortaBilling web server.

Replace 'port' with the required port. The SOAP/JSON interface is
available for administrators on port 443.

Replace 'service' with the API service that contains the required method
(e.g. specify the Account service to manage account information.)

Replace 'method' with the required API method (e.g. specify
get_account_info method in order to get an account record from the
database.)

https://portabilling-web.yourdomain.com:port/soap/
https://portabilling-web.yourdomain.com:port/soap/

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

8

The Content-Type header field used with a HTTPS POST request must
have one of the following values:

• application/x-www-form-urlencoded
• multipart/form-data

The body of the POST request must contain the following parameters (in
JSON format):

• auth_info – The mandatory authentication information such as
login-password or login-API token for the admin web interface,
or a session ID.

• params – A set of method parameters (in JSON format) that
depend on a method structure. Note that method parameters and
their structures are the same as those in the SOAP.

Here is an example of POST request in JSON format:

POST
Request URL:
https://demo.portaone.com:443/rest/Account/get_account_info
Host:demo.portaone.com:443
Content-Length: 83
Content-Type: application/x-www-form-urlencoded\r\n

{
 "params": {
 "i_account": "1000889"
 "get_included_services": "1"}
 "auth_info": {
 "session_id": "527865ee75368ff2d2c4f4881"
 },
}

To access the PortaBilling® web server, the login request must contain a
pair: a user login and either the API access token or the user password for
the admin web interface. For example:

POST
Request URL:https://demo.portaone.com:443/rest/session/login
Host:demo.portaone.com:443
Content-Length: 83
Content-Type: application/x-www-form-urlencoded\r\n

{
 "params": {
 "password": "exAmple",
 "login": "demo",
 },
}

The response returns the session ID value:

{"session_id":"527865ee75368ff2d2c4f4881cd2758a"}

https://demo.portaone.com/rest/session/login
http://demo.portaone.com/

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

9

Please note that we strongly recommend to use the session_id for
further requests. Otherwise, if you use the login-password or the API
access token authentication pairs for every request, new sessions will be
created and cause additional load to the database.

For more information about PortaBilling API please refer to the
PortaBilling API guide.

Sample work flow
Let’s have a look on how the Application works.

A service provider provisions subscriber details to their HSS when a
mobile user is added to, modified (e.g. a phone number / SIM card /
product is changed, etc.) or removed from PortaBilling®.

NOTE: External systems may require different configuration parameters. For example,
some HSSs only require SIM card details to activate a SIM card while others require
SIM card details and a profile name. That is why the information that the Application
requests from PortaBilling® depends on the external system to be provisioned.

In our example we assume that HSS requires SIM card details such as
MSISDN, IMSI and a profile name that corresponds to the LTE service
name.

Example 1. A mobile account is created in PortaBilling

1. PortaBilling sends the POST request with Subscriber/Created event

type and the i_account to the Application.

Date: Fri, 11 May 2018 13:28:08 GMT
Authorization: Signature keyId="test",algorithm="hmac-
sha1",signature="b+Y3I1ymQTsuq0h3HNiIl3P3SdE="
Host: 192.168.243.244:5000
Referrer: http://192.168.243.244:5000/
TE: trailers
Content-Length: 83
Content-Type: application/json

{
 "event_type": "Subscriber/Created",
 "variables": {
 "i_account": "1000889"
 }
}

2. The Application receives the request.

https://www.portaone.com/docs/PortaBilling_API.html

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

10

3. The Application sends a POST request to PortaBilling® to establish
an API session:

POST
Request URL:
https://demo.portaone.com:443/rest/session/login
Host:demo.portaone.com:443
Content-Length: 83
Content-Type: application/x-www-form-urlencoded\r\n

{
 "params": {
 "password": "exAmple",
 "login": "demo",
 },
}

4. The Application receives the response from PortaBilling® with the

session_id.
5. The Application takes the i_account and the session_id and calls the

following PortaBilling API methods to retriev subscriber details such
as service (e.g. LTE) and SIM card details (e.g. MSISDN, IMSI):

• Account/get_account_info to get the list of included
services and ensure that that the LTE service is enabled
for this subscriber.

POST
Request URL:
https://demo.portaone.com:443/rest/Account/get_account_in
fo
Host:demo.portaone.com:443
Content-Length: 83
Content-Type: application/x-www-form-urlencoded\r\n

{
 "params": {
 "i_account": "1000889"
 "get_included_services": "1"}
 "auth_info": {
 "session_id": "527865ee75368ff2d2c4f4881"
 },
}

• SIMCard/get_card_list to get the MSISDN and IMSI.

POST
Request URL:
https://demo.portaone.com:443/rest/SIMCard/get_card_list
Host:demo.portaone.com:443
Content-Length: 83
Content-Type: application/x-www-form-urlencoded\r\n

{
 "params": {
 "i_account": "1000889"
 }

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

11

 "auth_info": {
 "session_id": "527865ee75368ff2d2c4f4881"
 },
}

6. Once the subscriber’s information is received, the Application

interacts with the HSS via the HSS API to add a new subscriber with
the following parameters:

• MSISDN: 12065551122
• IMSI: 310019901000045
• Profile name: LTE

7. Once the subscriber is provisioned, the Application replies to
PortaBilling® with 200 OK status code.

8. The ESPF removes the event from the event queue.

Example 2: The existing subscriber has been updated (a new
SIM card is assigned)

1. PortaBilling sends the POST request with the Subscriber/Updated

event type and the i_account to the Application.

Date: Fri, 21 May 2018 13:28:08 GMT
Authorization: Signature keyId="test",algorithm="hmac-
sha1",signature="b+Y3I1ymQTsuq0h3HNiIl3P3SdE="
Host: 192.168.243.244:5000
Referrer: http://192.168.243.244:5000/
TE: trailers
Content-Length: 83
Content-Type: application/json

{
 "event_type": "Subscriber/Updated",
 "variables": {
 "i_account": "1000889"
 }
}

2. The Application receives the request.
3. The Application verifies that the API session is active and reuses the

session ID for the request. Othervise, the application establishes a
new API session.

4. The Application uses the i_account and the session_id to call the
following PortaBilling API methods:

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

12

• Account/get_account_info to get the list of included
services, account status and account balance.

POST
Request URL:
https://demo.portaone.com:443/rest/Account/get_account_i
nfo
Host:demo.portaone.com:443
Content-Length: 83
Content-Type: application/x-www-form-urlencoded\r\n

{
 "params": {
 "i_account": "1000889"
 "get_included_services": "1"}
 "auth_info": {
 "session_id": "731865ee75368ff2d2c4f4881"
 },
}

• SIMCard/get_card_list to get the MSISDN and IMSI.

POST
Request URL:
https://demo.portaone.com:443/rest/SIMCard/get_card_list
Host:demo.portaone.com:443
Content-Length: 83
Content-Type: application/x-www-form-urlencoded\r\n

{
 "params": {
 "i_account": "1000889"
 }
 "auth_info": {
 "session_id": "731865ee75368ff2d2c4f4881"
 },
}

5. Upon the response from PortaBilling®, the Application requests the

SIM card details from HSS via its API.
6. The Application compares the SIM card parameters received from

PortaBilling (MSISDN: 12065551122, IMSI: 310685901111133) with
the ones received from the HSS (MSISDN: 12065551122, IMSI:
310685900000045).

7. The Application detects that the IMSI has changed from
310685900000045 to 310685901111133 and notifies the HSS to delete
a subscriber with the IMSI: 310685900000045.

8. The Application then instructs the HSS to add a new subscriber with
the following parameters:

• MSISDN: 12065551122
• IMSI: 310685901111133
• Profile name: LTE

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

13

If the Application detects that the account’s status has changed to
blocked or suspended, it notifies the HSS to block a SIM card.

If the Application detects that the account has no available funds or
has reached the credit limit, it notifies the HSS to act respectively.
Note that the actions here depend on the requirements of the HSS.

9. Once the HSS is updated, the Application responds to PortaBilling®

with 200 OK status code.
10. The ESPF removes the event from the event queue.

Example 3: The existing subscriber has been terminated

1. PortaBilling sends the POST request with Subscriber/Deleted event

type and the i_account to the Application

Date: Fri, 11 May 2018 13:28:08 GMT
Authorization: Signature keyId="test",algorithm="hmac-
sha1",signature="b+Y3I1ymQTsuq0h3HNiIl3P3SdE="
Host: 192.168.243.244:5000
Referrer: http://192.168.243.244:5000/
TE: trailers
Content-Length: 83
Content-Type: application/json

{
 "event_type": "Subscriber/Deleted",
 "variables": {
 "i_account": "1000889"
 }
}

2. The Application verifies that the API session is active and reuses the

session ID for the request. Othervise, the application establishes a
new API session.

3. The Application uses the i_account and the session_id to call the
following API methods:

• Account/get_account_info to get the MSISDN (i.e. account
ID).

POST/HTTP/
Request URL:
https://demo.portaone.com:443/rest/Account/get_account_info
Host:demo.portaone.com:443
Content-Length: 83
Content-Type: application/x-www-form-urlencoded\r\n

{
 "params": {
 "i_account": "1000889"
 }

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

14

 "auth_info": {
 "session_id": "999865ee75368ff2d2c4f4881"
 },
}

• SIMCard/get_card_list method to verify that the sim card is

no longer assigned to the account.

POST/HTTP/
Request URL:
https://demo.portaone.com:443/rest/SIMCard/get_card_list
Host:demo.portaone.com:443
Content-Length: 83
Content-Type: application/x-www-form-urlencoded\r\n

{
 "params": {
 "i_account": "1000889"
 }
 "auth_info": {
 "session_id": "999865ee75368ff2d2c4f4881"
 },
}

4. Upon the response from PortaBilling, the Application notifies the

HSS to remove / terminate a subscriber with 12065551122 MSISDN.
5. Once the SIM card is removed from the HSS, the Application replies

to PortaBilling® with 200 OK status code.
6. The ESPF removes the event from the event queue.

Event types

Overview

Event types are divided into four groups: subscriber, customer, invoice
and DID. Events from each group notify the Application that a
corresponding entity has been created, updated or deleted in
PortaBilling®. Subscribe the Application for the necessary group of event
types:

1. The Subscriber group notifies the Application about changes in an

account’s service configuration and /or billing changes, such as
depletion of available funds, block or suspension, etc.

In PortaBilling®, an account record represents a means via which a
user gains access to a service (e.g. a SIM card, a phone line, an IP
PBX, etc.). Account records are identified by their unique IDs
(i_account). They store an account’s service configuration (e.g.
product name, service password, status, SIM card, etc.) and billing

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

15

configuration (e.g. available funds for debit accounts, credit limit for
credit accounts). Some configuration parameters of an account are
inherited from a customer.

2. A Customer group notifies the Application about changes in a

customer’s record in PortaBilling®.

In PortaBilling®, a customer record represents an owner of accounts
(e.g. a residential user or a company). Customer records are identified
by their unique IDs (i_customer). They store billing information and
service configuration that may be inherited by their accounts. Billing
information includes the charged amount (balance) and credit limit for
postpaid customers or available funds for prepaid customers,
invoicing configuration, DID pricing parameters, taxation, etc.

3. An Invoice group notifies the Application about invoices that have
been generated for or paid by a customer.

4. A DID group notifies the Application about DID numbers that have
been added to PortaBilling®, used by customers or removed from
PortaBilling®.

Group: Subscriber

Subscriber/Created

Description: A new Account entity with a unique account ID (e.g. a
phone number, username, IP address, etc.) has been added to
PortaBilling®.

Subscriber/Updated

Description: The configuration of an existing account has been changed.
For example, an account has expired, there are no available funds, a
product has been changed for a user, a user has topped up their balance,
etc.

Subscriber/Deleted

Description: An account has been permanently terminated in
PortaBilling. The user can no longer use the services. The account’s status
is changed to Closed and the account record is removed from the web
interface.

Variables Mandatory Data type Nillable Description
i_account Yes integer No The unique

account ID in
PortaBilling®.

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

16

Group: Customer

Customer/Created

Description: A new Customer entity with a unique customer ID (e.g. a
person’s or company’s name) is added to PortaBilling® when a user
subscribes for a service.

Customer/Updated

Description: A customer configuration has been changed in
PortaBilling®. For example, the customer’s name was changed from Alice
Doe to Alice Roe, the customer has exceeded the credit limit, etc.

Customer/Deleted

Description: A customer has been permanently terminated in
PortaBilling and can no longer use the services (e.g. the contract has
completed, the invoices are not paid, etc.). The customer’s status is first
changed to Closed and then the customer record is removed from the
web interface.

Variables Mandatory Data type Nillable Description
i_customer Yes integer No The unique ID of a

customer in
PortaBilling®.

Group: Invoice

Invoice/Created

Description: An invoice with a unique ID has been generated for a
customer in PortaBilling®.

Invoice/Updated

Description: An invoice with a unique ID has been paid fully or partially
or refunded in PortaBilling®.

Variables Mandatory Data type Nillable Description
i_customer Yes integer No A customer’s

unique ID in
PortaBilling®.

i_invoice Yes integer No An invoice’s
unique ID in
PortaBilling®.

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

17

Group: DID

DID/Created

Description: A DID number has been uploaded to PortaBilling®.

DID/Updated

Description: A DID number has been updated as follows: released to
the DID pool, assigned to / removed from a customer or an account,
moved to another installation or removed from the DID inventory in
PortaBilling®.

DID/Deleted

Description: A DID number has been removed from the DID
inventory in PortaBilling®.

Variables Mandatory Data type Nillable Description
number Yes string No The DID

number.

Commonly used PortaBilling® API methods
Since external systems (e.g. mobile core network components, IPTV
platforms, etc.) differ, they need different data from PortaBilling® and
they require specific actions to be taken.

Here is the list of most commonly used API methods that will help you
receive necessary information from PortaBilling®:

• Account/get_account_info – Use this method to receive
subscriber information, such as account ID (e.g. DID, MSISDN,
IPv4 address, login), service password, the unique ID of the
product (i.e. i_product) and name, activation and expiration dates,
available funds, status (e.g. active / blocked / terminated), service
policy (e.g. the unique ID of the access policy) and service features
that are enabled for this subscriber, etc.

• Account/get_custom_fields_values – Use this method to
receive custom information assigned to an account (i.e. db_value).

• Account/get_service_features_list – Use this method to
retrieve the list of service features that are available for an
account.

• Product/get_product_info – Use this method to receive
product information such as unique IDs of included services (i.e.
i_service), subscription (i_subscription) and volume discount plan
(i.e. i_vd_plan), etc.

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

18

• Service/get_service_info – Use this method to receive service
details such as service name, rating base, etc.

• SIMCard/get_card_list – Use this method to receive SIM card
details such as MSISDN, IMSI and the unique ID of the SIM card
(i_sim_card), etc.

• AccessPolicy/get_access_policy_info – Use this method to
receive Internet access policy details such as the unique ID of a
service policy (i_service_policy), hotlining parameters, etc.

• ServicePolicy/get_service_policy_info – Use this method to
receive service policy details such as specific service attributes.

• DID/get_number_info – Use this method to receive DID
details such as cost and revenue, owner, batch, etc.

• Invoice/get_invoice_info – Use this method to receive invoice
details such as the status of the invoice (e.g. paid / partially paid /
unpaid), the amount already paid by the customer, the amount
that must be paid by the customer and the date when the invoice
was generated, etc.

• Customer/get_customer_info – Use this method to receive
customer record details such as balance, billing status (e.g. active /
blocked / suspended), billing period, personal information (e.g.
salutation, name, address, etc.), IP Centrex configuration, etc.

Please refer to the PortaBilling® API guide for a more detailed description
of API methods and their structures.

APPENDIX A. Authentication methods
PortaBilling® ESPF supports three HTTP authentication schemes:

• Basic – authenticate with user ID and password.

Credentials string is constructed by joining the username and the
password with a single colon (":"). The result is then base64
encoded.

For example, let’s say that user ID is username and the password is
secret (i.e. username:secret). The authorization header then looks as
follows:

Authorization: Basic dXNlcm5hbWU6c2VjcmV0

The Application receives the request, decodes the base64-encoded
user ID and password. It compares the decoded credentials
username:secret with the ones that are stored in the Application’s
database. If they match, the authorization is passed.

https://www.portaone.com/docs/PortaBilling_API.html

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

19

NOTE: Basic authentication is usually done by the web server that runs the
application.

• Custom – authenticate with custom type and credentials;

The Authorization header contains the name of a custom
authentication scheme and credentials as it is configured in
PortaBilling®.

For example, let’s say that custom type is Plain and the password
is passexample. The authorization header then looks as follows:

Authorization: Plain passexample

The Application receives the request, compares the authentication
schema and credentials with the ones that are stored in the
Application’s database. If they match, the authorization is passed.

• Signature – authenticate by signature key and key ID.

Credentials sting is constructed of the originating date (the value
from the Date header), signature key and signature key ID.

The Date header is used to form a signing string. This signing
string is then signed with the signature key to make a signature.
The HMAC-SHA1 algorithm (Hash-based Message
Authentication Code using the SHA1 hash function) is used to
sign the signing string with the key.

For example, let’s say that the signature key is signature, the key ID
is test and the Date header is Thu, 12 Apr 2018 15:24:00 GMT. The
authorization header then looks as follows:

Authorization: Signature
keyId="test",algorithm="hmac-
sha1",signature="+IkiEg9UkyA+gh+pcI64iti

The Application receives the request, takes the value from the
Date header field and verifies the value from the key ID field. The
Application then takes the key value from the Application’s
database and runs the algorithm to calculate the signature. The
Application compares the obtained signature value with the one
that is received in the Authorization header. If they match, the
authorization is passed.

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

20

APPENDIX B. Sample Application to
process provisioning events

This is the example of the Application (Perl module) that provisions SIM
card details to the HSS. The Application is subscribed to process event
types of the Subcrtiber group.

#!/usr/bin/perl
Example Web Service to process events from EventSender
handler

run:
PORTA_BILLING_API=10.0.3.6 \
PORTA_BILLING_API_USER=api-login \
PORTA_BILLING_API_PASSWORD=api-password \
RESULT_FILE=/tmp/hss.log \
SERVICE_LOGIN=events \
SERVICE_PASSWORD=topsecret \
plackup --host 127.0.0.1 --port 9090 perl_example.psgi

use strict;
use warnings;
use Const::Fast;
use Cpanel::JSON::XS qw(decode_json encode_json);
use English qw(-no_match_vars);
use HTTP::Status qw(:constants);
use HTTP::Tiny;
use IO::File;
use MIME::Base64 qw(encode_base64);
use Plack::Request;
use POSIX qw(strftime);

const my $RESULT_FILE => ($ENV{RESULT_FILE} //
'/tmp/hss.log');

basic authorization
my $user = $ENV{SERVICE_LOGIN} // 'events';
my $password = $ENV{SERVICE_PASSWORD} //
'topsecret';
my $base_auth_string = 'Basic ' . encode_base64($user . ':'
. $password, '');

PortaBilling API server
my $PB_API_HOST = $ENV{PORTA_BILLING_API} // '10.0.0.1';
my $PB_API_USER = $ENV{PORTA_BILLING_API_USER} // '';
my $PB_API_PASSWORD = $ENV{PORTA_BILLING_API_PASSWORD} //
'';

reuse PB API session
my $SESSION_EXPIRATION = $ENV{SESSION_EXPIRATION} // 60;
my ($session, $session_last_usage);

my $http = HTTP::Tiny->new(verify_SSL => 0, timeout => 5);

error logging
sub log_error {
 my $message = shift;
 print STDERR '[ERROR] ', $message, "\n";
 return;

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

21

}

sub log_debug {
 my $message = shift;
 print STDERR '[DEBUG] ', $message, "\n";
 return;
}

Perform HTTP/REST request to PortaBilling API
sub get_api_result {
 my ($method, $session_id, $params) = @_;

 log_debug(sprintf "API: POST https://%s/rest/%s %s",
$PB_API_HOST, $method, encode_json($params));

 my $response = $http->post_form(
 'https://' . $PB_API_HOST . '/rest/' . $method, {
 auth_info => encode_json($session_id ? {
session_id => $session_id } : { login => $PB_API_USER,
password => $PB_API_PASSWORD }),
 params => encode_json($params),
 }
);
 if (!$response->{success}) {
 log_error(sprintf 'PB API %s failed, error %s %s',
$method, $response->{status}, $response->{reason});
 return undef;
 }

 # debug, if required:
 #print STDERR 'PB API ', $method, ' response: ',
$response->{content}, "\n";

 my $data = eval { decode_json($response->{content}) };
 if ($EVAL_ERROR || !$data) {
 # no content or malformed JSON
 log_error(sprintf 'Failed to parse reply content:
%s, error %s', $response->{content} // '', $EVAL_ERROR);
 return undef;
 }

 return $data;
} ## end sub get_api_result

Login to PortaBilling API
sub api_login {
 my ($api_login, $api_password) = @_;

 if ($session_last_usage && $session_last_usage +
$SESSION_EXPIRATION > time()) {
 # session active
 log_debug(sprintf 'Reusing session %s', $session);
 return $session;
 }

 my $data = get_api_result('Session/login', undef, {
login => $api_login, password => $api_password });
 return undef if (!$data);

 $session = $data->{session_id};
 $session_last_usage = time();
 log_debug(sprintf 'Created session %s', $session);

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

22

 return $session;
}

Get Account information
sub api_get_account_info {
 my ($session_id, $i_account) = @_;

 my $data = get_api_result('Account/get_account_info',
$session_id, { i_account => $i_account });
 return undef if (!$data);
 $session_last_usage = time();
 return $data->{account_info};
}

Get list of SIM Cards assigned to Account
sub api_get_sim_cards {
 my ($session_id, $i_account) = @_;

 my $data = get_api_result('SIMCard/get_card_list',
$session_id, { i_account => $i_account });
 return undef if (!$data);
 $session_last_usage = time();
 return $data->{card_list};
}

Here we perform actual provisioning of collected data to
external HSS
As an example, we just write information to local file
row format: action,account-id,balance,status,IMSI,datetime
where
action - string, one of 'Created', 'Updated', 'Deleted'
account-id - string, ID of account
balance - number, account's balance
status - string, account's status
IMSI - string, SIM card IMSI (optional)
datetime - string, datetime in YYYY-MM-DD hh:mm:ss
format
sub provision_external_system {
 my $h = shift;

 my $status = 0;
 my $account = $h->{account};
 my $sim_list = $h->{sim_cards} // [];
 my $datetime = strftime('%Y-%m-%d %H:%M:%S',
localtime());

 my $fh = IO::File->new($RESULT_FILE, 'a');
 if (!defined $fh) {
 log_error(sprintf('Failed to open file %s, error
%s', $RESULT_FILE, $OS_ERROR));
 return $status;
 }

 if (scalar(@{$sim_list}) == 0) {
 # Account without SIM cards
 if (!printf $fh "%s,%s,%.5f,%s,,%s\n", $h-
>{action}, $account->{id}, $account->{balance}, ($account-
>{status} || 'open'), $datetime) {
 log_error(sprintf('Failed to write file %s,
error %s', $RESULT_FILE, $OS_ERROR));
 $status = 0;
 }
 $status = 1;

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

23

 }
 else {
 foreach my $sim (@{$sim_list}) {
 if (
 !printf $fh "%s,%s,%.5f,%s,%s,%s\n", $h-
>{action}, $account->{id}, $account->{balance}, ($account-
>{status} || 'open'), $sim->{imsi},
 $datetime
) {
 log_error(sprintf('Failed to write file
%s, error %s', $RESULT_FILE, $OS_ERROR));
 $status = 0;
 last;
 }
 $status = 1;
 }
 }

 if (!$fh->close) {
 log_error(sprintf('Failed to close file %s, error
%s', $RESULT_FILE, $OS_ERROR));
 $status = 0;
 }

 log_debug(sprintf 'Provisioning status: %s', ($status
? 'OK' : 'FAILURE'));

 return $status;
} ## end sub provision_external_system

check requirements for incoming request
sub validate_request {
 my $req = shift;

 # HTTP method
 if ($req->method ne 'POST') {
 log_error('Only POST method allowed');
 return HTTP_METHOD_NOT_ALLOWED;
 }

 # Basic Authorization
 my $auth_value = $req->header('Authorization') || '';
 if ($auth_value ne $base_auth_string) {
 log_error('Auth failed');
 return HTTP_UNAUTHORIZED;
 }

 # require Content-Type: application/json
 if ($req->content_type ne 'application/json') {
 log_error(sprintf 'Content-Type %s, expected
application/json', $req->content_type);
 return HTTP_UNSUPPORTED_MEDIA_TYPE;
 }

 return 0;
} ## end sub validate_request

sub process_request {
 my $req = shift;

 my $code = validate_request($req);
 return $code if ($code > 0);

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

24

 # parse request
 my $event_content = $req->content;
 my $event = eval { decode_json($event_content) };
 if ($EVAL_ERROR || !$event) {
 # received malformed JSON data: 400 Bad Request
 return HTTP_BAD_REQUEST;
 }

 log_debug(
 sprintf 'Received event: %s Variables: %s', $event-
>{event_type},
 join(' ', map { $_ . '=' . $event->{variables}-
>{$_} } (sort keys %{ $event->{variables} }))
);

 # Subscriber/Created
 # Subscriber/Updated
 # Subscriber/Deleted
 # variables: i_account

 my ($object, $action) = split(/\//, $event-
>{event_type}, 2);

 if ($object ne 'Subscriber') {
 # ignore
 return HTTP_OK;
 }

 my $i_account = $event->{variables}->{i_account};
 if (!$i_account) {
 # mandatory variable missing: 400 Bad Request
 return HTTP_BAD_REQUEST;
 }

 my $api_session = api_login($PB_API_USER,
$PB_API_PASSWORD);
 if (!$api_session) {
 log_error('PB API login failed');
 return HTTP_INTERNAL_SERVER_ERROR;
 }

 my $account = api_get_account_info($api_session,
$i_account);
 if (!$account) {
 log_error('Account not found');
 return HTTP_OK;
 }

 my $sim_card_list = api_get_sim_cards($api_session,
$i_account);
 if (!$sim_card_list) {
 log_error('Failed to get SIM Cards for Account');
 return HTTP_INTERNAL_SERVER_ERROR;
 }

 if (
 !provision_external_system({
 action => $action,
 account => $account,
 sim_cards => $sim_card_list,
 }
)
) {

 Provisioning Application Reference Guide

© 2000-2019 PortaOne, Inc. All rights Reserved. www.portaone.com

25

 # TODO add required error processing (alerts,
retries, etc)
 return HTTP_INTERNAL_SERVER_ERROR;
 }

 return HTTP_OK;
} ## end sub process_request

PSGI application
my $app = sub {
 my $env = shift;
 my $req = Plack::Request->new($env);

 my $code = process_request($req);

 return $req->new_response($code)->finalize;
};

log_debug('Started');

return $app;

	Provisioning Application Reference Guide
	Table of Contents
	Preface
	Overview
	Receiving provisional events
	Retrieiving data from PortaBilling®
	Sample work flow
	Commonly used PortaBilling® API methods
	APPENDIX A. Authentication methods
	APPENDIX B. Sample Application to process provisioning events

